Volume 2, Issue 6, December 2013, Page: 62-65
Alumina-Based Composites Reinforced with Silver Particles
Enrique Rocha-Rangel, Universidad Politécnica de Victoria, 87138, México
Elizabeth Refugio-García, Departamento de Materiales, Universidad Autónoma Metropolitana, 02200, México
José Miranda-Hernández, Universidad Autónoma del Estado de México (UAEM-Valle de México), 54500, México
Eduardo Terres-Rojas, Laboratorio de Microscopía Electrónica de Ultra Alta Resolución, IMP, 07730, México
Received: Nov. 30, 2013;       Published: Jan. 10, 2014
DOI: 10.11648/j.am.20130206.11      View  3237      Downloads  176
Abstract
Al2O3/Ag composite ceramics were fabricated by the use of mechanical milling and pressureless sintering. Al2O3 + 10 wt.% Ag were mixed and milled during 12 h at 300 rpm in a horizontal mill, then with the powder mixture it was conformed cylindrical samples by uniaxial pressing using 300 MPa. The pressed samples were sintered during 1 h in an electrical furnace at 1300, 1400 and 1500°C respectively. Sinter was performed using an argon atmosphere inside the furnace in order to inhibit silver oxidation. XRD results established that silver retains its crystalline structure. On the other hand, density of samples is better with increments in temperature. However, the final relative density is small and about of 91%. Scanning electron microscopy observations show alumina’s microstructure with very fine and homogeneous distributions of silver particles. Increments in sintering temperature are reflected as enhancements of the density and consequently of the fracture toughness of the Al2O3/Ag composite ceramics.
Keywords
Al2O3/Ag Composites, Fracture Toughness, Pressureless Sintering, Metallic Reinforcement
To cite this article
Enrique Rocha-Rangel, Elizabeth Refugio-García, José Miranda-Hernández, Eduardo Terres-Rojas, Alumina-Based Composites Reinforced with Silver Particles, Advances in Materials. Vol. 2, No. 6, 2013, pp. 62-65. doi: 10.11648/j.am.20130206.11
Reference
[1]
O.L. Ighodaro and O.I. Okoli, International Journal of Applied Ceramics Technology (2008)313-323.
[2]
N. Travitzkya, I. Gotmanb and N. Claussena, Materials Letters 57(2003)3422–3426.
[3]
M. Szafran, K. Konopka, E. Bobryk and K.J. Kurzydłowski, Journal of the European Ceramic Society 27(2007)651–654.
[4]
S. Avraham, P. Beyer, R. Janssen, N. Claussen and W.D. Kaplan, Journal of the European Ceramic Society 26(2006)2719–2726.
[5]
P. Agrawal and C.T. Sun, Composites Science and Technology 64(2004)1167–1178.
[6]
A. Matterna, B. Huchlerb, D. Staudeneckerb, R. Oberackera, A. Nagelb and M.J. Hoffmanna, Journal of the European Ceramic Society 24(2004)3399–3408.
[7]
K. Konopka, J.J. Bucki, S. Gierlotka, W. Zielin´ski, and K.J. Kurzyydowski, Materials Characterization 56(2006)394–398.
[8]
J. Li, J. Sun and L. Huang, Materials Science and Engineering A323(2002)17–20.
[9]
D. Horvitza, I. Gotmana, E.Y. Gutmanasa and N. Claussen, Journal of the European Ceramic Society 22(2002)947–954.
[10]
A. Taotao, Chinese Journal of Aeronautics 21(2008)559-564.
[11]
E. Rocha-Rangel, E. Refugio-García, J. G. Miranda-Hernández and E. Terrés-Rojas, Journal of Ceramic Processing Research, 10[6](2009)744-747.
[12]
J. G. Miranda-Hernández, Master Thesis, Universidad Autonoma Metropolitana, Mexico (2006).
[13]
J. M. Miranda, S. Moreno, B. Soto and E. Rocha, Journal of Ceramic Processing Research, 7[4](2006)311-314.
[14]
V. Mercedes, Doctoral Thesis, Universidad Autónoma de Madrid, Instituto de Ciencia de Materiales de Madrid, Spain (2003).
[15]
A. Feder, I. Llanes and M. Anglada, Bol. Soc. Esp. Ceram. 43(2004)47-52.
[16]
R. Günther, T. Klassen, B. Dickau, F. Gärtner, A. Bartels and R. Bormann, Journal of American Ceramic Society, 84(2001)1509-1513
[17]
A.G. Evans and E.A. Charles, Journal of the American Ceramic Society, 59(1976)371-372.
[18]
J.F. Shackelford and R.H. Doremus, Ceramic and Glass Materials: Structure, Properties and Processing. Springer (2010).
Browse journals by subject