Volume 5, Issue 6, December 2016, Page: 73-76
Ionic Liquid Crystalline Systems Consisting of Polyammonium and Counter Carboxylate Ions
Shiori Tomitaka, Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan
Masanori Nata, Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan
Seiji Ujiie, Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan
Received: Dec. 7, 2016;       Accepted: Dec. 29, 2016;       Published: Jan. 24, 2017
DOI: 10.11648/j.am.20160506.13      View  2918      Downloads  94
Abstract
Novel ionic liquid crystals consisting of polyammonium and carboxylate ions were synthesized by ion complexation of polyethyleneimine and carboxylic acids (α,ω-dicarboxylic acids and hydroxyalkanoic acid). Their thermal properties and orientational behavior were examined by polarizing microscopic observation, differential scanning calorimetry, and variable temperature X-ray diffraction measurements. The ionic liquid crystals exhibited thermotropic liquid crystalline phases. The ionic liquid crystals (BP/ndA) bearing counter dicarboxylate ions formed a cubic phase upon heating and cooling. On the other hand, the ionic liquid crystal bearing the counter hydroxyalkanoate ion exhibited enantiotropic smectic A and smectic B phases with focal conic fan textures. These ionic liquid crystalline phases were formed by ionic and hydrophobic interactions because they did not have an aromatic mesogenic group.
Keywords
Ionic Liquid Crystal, Ionic Interaction, Polyammonium, Thermal Property, Orientational Behavior, Cubic, Smectic A, Smectic B
To cite this article
Shiori Tomitaka, Masanori Nata, Seiji Ujiie, Ionic Liquid Crystalline Systems Consisting of Polyammonium and Counter Carboxylate Ions, Advances in Materials. Vol. 5, No. 6, 2016, pp. 73-76. doi: 10.11648/j.am.20160506.13
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Handbook of Liquid Crystal Research, edited by P. J. Collings and J. S. Patel, Chapter 8, 329-330, NY (1997).
[2]
S. Ujiie and T. Kato, Handbook of Liquid Crystals 2nd edition (Wiley-VCH), edited by J. W. Goodby, P. J. Collings, T. Kato, C. Tschierske, H. F. Gleeson, and P. Raynes, 7, 381-412 (2014).
[3]
C. M. Paleos, G. Margomenou-Leonidopoulou, and C. Christias, Mol. Cryst. Liq. Cryst., 137, 391 (1986).
[4]
S. Ujiie and K. Iimura, Macromolecules, 25, 3174 (1992).
[5]
S. Ujiie and K. Iimura, Chem. Lett., 19, 995 (1990).
[6]
S. Ujiie, Y. Tanaka, and K. Iimura, Poly. Adv. Tech., 11, 450 (2000).
[7]
S. Ujiie, H. Furukawa, Y. Yano, and A. Mori, Thin Solid Films, 509, 185 (2006).
[8]
T. Yoshimi, M. Moriyama, and S. Ujiie, Mol. Cryst. Liq. Cryst., 511, 319 (2009).
[9]
J. Wu and S. Ujiie, Mol. Cryst. Liq. Cryst., 563, 67 (2012).
[10]
A. A. Fernandez and P. H. J. Kouwer, Int. J. Mol. Sci., 17, 731 (2016).
[11]
D. Demus, H. Demus, and H. Zaschke, Flüssige Kristalle in Tabellen, VEB Deutscher Verlag für Grundstoffindustrie, Leipzip (1974).
[12]
A. Skoulios and V. Luzzati, Nature, 183, 1310 (1959).
[13]
C. Paleos, M. Arkas, R. Seghrouchni, and A. Skoulios, Mol. Cryst. Liq. Cryst., 268, 179 (1995).
[14]
S. Ujiie and A. Mori, Mol. Cryst. Liq. Cryst., 437, 1269 (2005).
[15]
S. Ujiie, S. Takagi, and M. Sato., High Perform. Polym. 10, 139 (1998).
[16]
S. Ujiie, Y. Yano, and A. Mori, Mol. Cryst. Liq. Cryst., 411, 483 (2004).
Browse journals by subject