Volume 6, Issue 5, October 2017, Page: 52-56
A Review on Dendrimers and Metallodendrimers, the Important Compounds as Catalyst in Material Chemistry
Md. Ashraful Alam, Department of Chemistry and Bioengineering, Iwate University, Morioka, Japan
Aklima Jahan, Department of Chemistry, University of Chittagong, Chittagong, Bangladesh
Md. Wahab Khan, Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
Received: Jul. 25, 2017;       Accepted: Aug. 2, 2017;       Published: Aug. 31, 2017
DOI: 10.11648/j.am.20170605.11      View  2856      Downloads  168
The research and the usage of the dendrimers and metallodendrimer compounds which are also known as supramolecules are attracted by the scientists very fast. The use of these two types of compounds are developed and spread out from the chemical to materials throughout the world. One of the important applications of these supramolecules is as catalyst in the different fields of chemistry and material sciences.
Dendrimers, Metallodendrimers, Synthetic, Catalyst, Materials, Supramolecules
To cite this article
Md. Ashraful Alam, Aklima Jahan, Md. Wahab Khan, A Review on Dendrimers and Metallodendrimers, the Important Compounds as Catalyst in Material Chemistry, Advances in Materials. Vol. 6, No. 5, 2017, pp. 52-56. doi: 10.11648/j.am.20170605.11
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Zeng F, Zimmerman SC. (1997) Dendrimers in Supramolecular Chemistry:  From Molecular Recognition to Self-Assembly. Chem. Rev. 97 (5): 1681–1712.
Schalley CA, Baytekin B, Baytekin HT, Engeser M, Thorsten F, Rang A. (2006) Mass spectrometry as a tool in dendrimer chemistry: from self-assembling dendrimers to dendrimer gas-phase host–guest chemistry. J. Phys. Org. Chem. (19): 479-490.
Balzani V, Campagna S, Denti G, Juris A, Serrini S, Venturi M (1998) Designing Dendrimers Based on Transition-Metal Complexes. Light-Harvesting Properties and Predetermined Redox Patterns. Acc. Chem. Res. 31: 26-34.
Newkome GR, Moorefield CN, Vögtle F (2001) Dendrimers and Dendrons: Concepts, Syntheses, Applications, Wiley-VCH, Weinheim.
Tomalia D, Fréchet JMJ (Eds.) (2002) Dendrimers and other Dendritic Polymers, Wiley-VCH, New York.
Newkome GR, He E, Moorefield CN (1999) Suprasupermolecules with Novel Properties:  Metallodendrimers Chem. Rev. 99: 1689-1746.
Bosman AW, Jansen EW, Meijers EW, (1999) About Dendrimers:  Structure, Physical Properties, and Applications Chem. Rev. 99: 1665-1688.
Oosterom GE, Reek JNH, Kamer PCJ, Leeuwen PWNMV (2001) Transition Metal Catalysis Using Functionalized Dendrimers. Angew. Chem. Int. Ed. Engl. 40: 1828-1859.
Heerbeek RV, Kamer PCJ, Leeuwen PWNMV, Reek JNH (2002) Dendrimers as Support for Recoverable Catalysts and Reagents. Chem. Rev. 102: 3717-3756.
(a) Knapen JWJ, van der Made AW, de Wilde JC, van Leeuwen PWNM, Wijkens P, Grove DM, van Koten G, Homogeneous catalysts based on silane dendrimers functionalized with arylnickel (II) complexes. (1994) Nature 372: 659-663; (b) R. Kreiter, A. W. Kleij, R. J. M. Klein Gebbink, G. van Koten, in: F. Vögtle, C. A. Schalley (Eds.), Dendrimers IV: Metal Coordination, Self Assembly, Catalysis. (2001) Top. Curr. Chem. 217: 163.
Cuadrado I, Morán M, Casado CM, Alonso B, Losada J (1999) Coord. Chem. Rev. 395: 193–195.
Hearshaw MA, Moss JR (1999) Organometallic and related metal-containing dendrimers. Chem. Commun. 1-8.
(a) D. Astruc, F. Chardac, Chem. Rev. 101 (2001) 1991; (b) L. Gade, C. R. Chimie 6 (2003).
Lehn JM (1995) Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, Germany.
Astruc D, Electron and Proton Reservoir Complexes (2000) Thermodynamic Basis for C-H Activation and Applications in Redox and Dendrimer Chemistry. Acc. Chem. Res. 33: 287.
Jansen, J. F. G. A and Meijer, E. W., “The dendritic box: Shape selective liberation of encapsulated Guests”. J. Am. Chem. Soc., vol. 117, pp. 4417-4418, 1995.
Wooly, K. L., Hawker, C. J. and Frechet, M. J., “Unsymmetrical three-dimensional macromolecules: Preparation and characterization of strongly dipolar dendritic macromolecules”, J. Am. Chem. Soc., vol. 115, pp. 11496-11505, 1993.
Percec, V., Johansen, G., Unger, G. and Zhou, J., “Fluorophobic effect induces the self-assembly of semifluorinated tapered monodendrons containing crown ethers into supramolecular columnar dendrimers which exhibit a homeotrobic hexagonal columnar liquid crystalline phase”, J. Am. Chem. Soc., vol. 118, pp. 9855-9866, 1996.
(a) Jiang, DL, Aida, T (2001) Dendrimers and Other Dendritic Polymers. (b) Fre´chet, JMJ, Tomalia, DAEds (2001) John Wiley & Sons: Chichester.
(a) Newkome, GR, Moorefield, CN, Vo¨gtle, F (2001) Dendrimers and Dendrons; Wiley-VCH: Weinheim (b) Grayson, SM, Fre´chet, JMJ (2001) Convergent Dendrons and Dendrimers:  from Synthesis to Applications. Chem. Rev. 101: 3819-3868. (c) Vo¨gtle, F, Vol. Ed (2001) Dendrimers IIIs Design, Dimension, Function. Top. Curr. Chem. 212. (d) Vo¨gtle, F, Gestermann, S, Hesse, R, Schwierz, H, Windisch, B (2000) Functional dendrimers. Prog. Polym. Sci. 25: 987-1041. (e) Vo¨gtle, F, Vol. Ed (2000) Dendrimers IIs Architecture, Nanostructure and Supramolecular Chemistry. Top. Curr. Chem. 210. (f) Bosman, AW, Janssen, HM, Meijer, EW (1999) Chem. Rev. 99: 1665. (g) Majoral, JP, Caminade, AM (1999) Chem. Rev. 99: 845.
Rehana ME and Mapolie SF (2014) Nickel metallodendrimers as catalyst precursors in the tandem oligomerization of ethylene and Friedel–Crafts alkylation of its olefinic products. Inorg Chim Acta 409: 96–105.
Tansir Ahamad and Saad MA (2014) Synthesis and characterization of first and second-generation polyamide pyridylimine nickel dihalide metallodendrimers and their uses as catalysts for ethylene polymerization. Polym Int 63: 1965–1973.
(a) Weil, T, Reuther, E, Mu¨ llen, K (2002) Shape-Persistent, Fluorescent Polyphenylene Dyads and a Triad for Efficient Vectorial Transduction of Excitation Energy. Angew. Chem., Int. Ed. 41 (11): 1900-1904. (d) Jiang, D L, Aida, T (1997) Photoisomerization in dendrimers by harvesting of low-energy photons. Nature 388: 454-456. (e) Shortreed, MR, Swallen, SF, Shi, ZY, Tan, W, Xu, Z, Devadoss, C, Moore, JS, Kopelman, R (1997) Directed Energy Transfer Funnels in Dendrimeric Antenna Supermolecules. J. Phys. Chem. B 1997, 101 (33): 6318-6322. (f) Devadoss, C, Bharathi, P, Moore, JS (1996) Energy Transfer in Dendritic Macromolecules:  Molecular Size Effects and the Role of an Energy Gradient. J. Am. Chem. Soc. 1996, 118 (40): 9635-9644. (g) Stewart, GM, Fox, MA (1996) Chromophore-Labeled Dendrons as Light Harvesting Antennae. J. Am. Chem. Soc. 118 (18): 4354-4360.
(a) Cameron, C. S.; Gorman, C. B. (2002) Effects of Site Encapsulation on Electrochemical Behavior of Redox-Active Core Dendrimers. Adv. Funct. Mater. 2002, 12 (1): 17-20. (b) (b) Stone, D. L.; Smith, D. K.; McGrail, P. T (2002) Ferrocene Encapsulated within Symmetric Dendrimers:  A Deeper Understanding of Dendritic Effects on Redox Potential. J. Am. Chem. Soc. 124 (5): 856-864.
Dı´ez-Barra E, Garcı´a-Martı´nez JC, del Rey R, Rodrı´guez-Lo´pez J, Giacalone F, Segura JL, Martı´n N (2003) Synthesis and Photoluminescent Properties of 1,1¢-Binaphthyl-Based Chiral Phenylenevinylene Dendrimers. J. Org. Chem. 68: 3178-3183.
Stewart, G. M, Fox, M. A (1996) Chromophore-Labeled Dendrons as Light Harvesting Antennae J. Am. Chem. Soc. 118: 4354-4360.
Kimura M, Shiba T, Muto T, Hanabusa K, Shirai H (2000) Energy transfer within ruthenium-cored rigid Metallodendrimers. Tetrahedron Letters 41: 6809-6813.
For selected reviews: (a) Grayson, S. M.; Fre´chet, J. M. J. Chem. ReV. 2001, 101, 3819-3868. (b) Hecht, S.; Fre´chet, J. M. J. Angew. Chem., Int. Ed. 2001, 40, 74-91. (c) Astruc, D.; Chardac, F. Chem. ReV. 2001, 101, 2991-3024. (d) van Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. ReV. 2002, 102, 3717-3756. (e) Crespo, L.; Sanclimens, G.; Pons, M.; Giralt, E.; Royo, M.; Albericio, F. Chem. ReV. 2005, 105, 1663-1682. (f) Tomalia, D. A. Prog. Polym. Sci. 2005, 30, 294-324.
(a) Baars, M. W. P. L.; Kleppinger, R.; Koch, M. H. J.; Yeu, S.-L.; Meijer, E. W. Angew. Chem., Int. Ed. 2000, 39, 1285-1288. (b) Hecht, S.; Vladimirov, N.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2001, 123, 18-25. (c) Marsitzky, D.; Vestberg, R.; Blainey, P.; Tang, B. T.; Hawker, C. J.; Carter, K. R. J. Am. Chem. Soc. 2001, 123, 6965-6972. (d) Le Derf, F.; Levillain, E.; Trippe´, G.; Gorgues, A.; Salle´, M.; Sebastian, R.-M.; Caminade, A.-M.; Majoral, J.-P. Angew. Chem., Int. Ed. 2001, 40, 224-227. (e) Gong, L.-Z.; Hu, Q.-S.; Pu, L. J. Org. Chem. 2001, 66, 2358-2367.
(a) Freeman, A. W.; Koene, C.; Malenfant, P. R. L.; Thompson, M. E.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2000, 122, 12385-12386. (b) Weener, J.-W.; Meijer, E. W. Ad V. Mater. 2000, 12, 741-746. (c) Newkome, G. R.; He, E.; Godi´nez, L. A.; Baker, G. R. J. Am. Chem. Soc. 2000, 122, 9993-10006. (d) Lupton, J. M.; Samuel, I. D. W.; Beavington, R.; Burn, P. L.; Ba¨ssler, H. Ad V. Mater. 2001, 13, 258-261. (e) Maus, M.; De, R.; Lor, M.; Weil, T.; Mitra, S.; Wiesler, U.-M.; Herrmann, A.; Hofkens, J.; Vosch, T.; Mu¨llen, K.; De Schryver, F. C. J. Am. Chem. Soc. 2001, 123, 7668-7676.
(a) Jansen, J. F. G. A.; de Brabander-van den Berg, E. M. M.; Meijer, E. W. Science 1994, 266, 1226-1229. (b) Jansen, J. F. G. A.; Meijer, E. W. J. Am. Chem. Soc. 1995, 117, 4417-4418. (c) Kovvali, A. S.; Sirkar, K. K. Ind. Eng. Chem. Res. 2001, 40, 2502-2511.
Grayson, S. M.; Fre´chet, J. M. J. Chem. ReV. 2001, 101, 3819-3868.
(a) Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1990, 112, 76387647. (b) Miller, T. M.; Neenan, T. X.; Zayas, R.; Bair, H. E. J. Am. Chem. Soc. 1992, 114, 1018-1025. (c) Ihre, H.; Hult, A.; So¨derlind, E. J. Am. Chem. Soc. 1996, 118, 6388-6395. (d) Moore, J. S. Acc. Chem. Res. 1997, 30, 402-413. (e) Deb, S. K.; Maddux, T. M.; Yu, L. J. Am. Chem. Soc. 1997, 119, 9079-9080.
Moulines, F.; Astruc, D. Tentacled Iron Sandwichs. Angew. Chem., Int. Ed. Engl. 1988, 27, 1347–1349.
Marx, H.-W.; Moulines, F.; Wagner, T.; Astruc, D. Hexakis (but-3-ynyl) benzene. Angew. Chem., Int. Ed. Engl. 1996, 35, 1701–1704.
Moulines, F.; Djakovitch, L.; Boese, R.; Gloaguen, B.; Thiel, W.; Fillaut, J.-L.; Delville, M.-H.; Astruc, D. Organometallic Molecular Trees as Multi-Electron and Proton Reservoirs: CpFeInduced Nona-Allylation of Mesitylene and Phase-Transfer Catalyzed Synthesis of a Redox Active Nona-Iron Complex. Angew. Chem., Int. Ed. Engl. 1993, 32, 1075–1077.
Fillaut, J.-L.; Astruc, D. Tentacled Aromatics: From Central-Ring to Outer-Ring Iron Sandwich Complexes. J. Chem. Soc., Chem. Commun. 1993, 1320–1322
Fillaut, J.-L.; Linares, J.; Astruc, D. Single-Step Six-Electron Transfer in a Heptanuclear Complex: Isolation of Both Redox Forms. Angew. Chem., Int. Ed. Engl. 1994, 33, 2460–2462.
Astruc, D; Valerio, C; J. –Ruiz, J.; Hamon, J. –R; Varret, F. Electron Reservoir Sandwich Complexes: From Mono- and Bimetallic Complexes to Molecular Trees In Supramolecular Magnetism; Kahn, O., Ed.; NATO ASAI Series, Kluwer: Dordrecht, 1996; p 107.
Vale´ rio, C.; Fillaut, J.-L.; Ruiz, J.; Guittard, J.; Blais, J.-C.; Astruc, D. The Dendritic Effect in Molecular Recognition: Ferrocene Dendrimers and their Use as Supramolecular Redox Sensors for the Recognition of Small Inorganic Anions. J. Am. Chem. Soc. 1997, 119, 2588–2589.
Alonso, E.; Vale´ rio, C.; Ruiz, J.; Astruc, D. Polycationic Metallodendrimers with Cobalticinium and FeCp (arene) termini. New J. Chem. 1997, 21, 1139–1141.
Vale´ rio, C.; Ruiz, J.; Fillaut, J.-L.; Astruc, D. Dendritic Effect in the Recognition of Small Inorganic Anions using a Polycationic Nona-cobalticinium Dendrimer. C. R. Acad. Sci., Paris 1999, 2, 79–83.
Vale´ rio, C.; Alonso, E.; Ruiz, J.; Blais, J.-C.; Astruc, D. A Polycationic Metallodendrimer with 24 Organoiron Termini which Senses Chloride and Bromide Anions. Angew. Chem., Int. Ed. 1999, 38, 1747–1751.
Browse journals by subject