Volume 6, Issue 5, October 2017, Page: 57-65
Dielectrics Properties and Temperature Dependence of Electron Spin Resonance of Doped Molybdenum CCTO
Séka Simplice Kouassi, Department of Physics Chemistry Mathematics and Computer Science, Jean Lorougnon GUEDE University, Daloa, Ivory Coast
Jean-Pierre Sagou Sagou, Laboratory of Materials Inorganics Chemistry, Félix Houphouët BOIGNY University, Abidjan, Ivory Coast
Cécile Autret-Lambert, Greman Umr 7347 Laboratory, François Rabelais University, Tours, France
Sonia Didry, Greman Umr 7347 Laboratory, François Rabelais University, Tours, France
Marc Lethiecq, Greman Umr 7347 Laboratory, François Rabelais University, Tours, France
Received: Jul. 18, 2017;       Accepted: Jul. 28, 2017;       Published: Aug. 31, 2017
DOI: 10.11648/j.am.20170605.12      View  1984      Downloads  101
Abstract
The role perovskite-type CaCu3Ti4O12 (CCTO) dope by molybdenum (Mo) on the microstructure, dielectric properties and the temperature dependence of Electron Spin Resonance (ESR) has been investigated in this work. The solid state reaction has been used to synthesize CCTO ceramic samples. Substitution on Ti-site by Mo helps to increase the grain size of samples and therefore increase the dielectric constant according to the IBLC theory. There is no great difference between the ESR spectra of pure CCTO and CCTO doped by Molybdenum as a function of temperature. For a given temperature, ESR signal spectrum intensity increases as the Mo content increases. The magnetic susceptibility varies according to the composition only when the temperature is higher than 70K. The antiferromagnetic character of the CCTO decreases when the Mo content increases.
Keywords
Ceramics, Solid State Reaction Method, Dielectric Properties, Magnetic Properties, Electron Spin Resonance
To cite this article
Séka Simplice Kouassi, Jean-Pierre Sagou Sagou, Cécile Autret-Lambert, Sonia Didry, Marc Lethiecq, Dielectrics Properties and Temperature Dependence of Electron Spin Resonance of Doped Molybdenum CCTO, Advances in Materials. Vol. 6, No. 5, 2017, pp. 57-65. doi: 10.11648/j.am.20170605.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases, J. Solid State Chem. 151 (2000) 323-325.
[2]
C. Guerrero, J. Roldan, C. Ferrater, M. V. Garcia-Cuenza, F. Sanchez, M. Varala, Growth and characterization of epitaxial ferroelectric PbZrxTi1-xO3 thin film capacitors with SrRuO3 electrodes for non-volatile memory applications, Solid State Electronics, 45 (2001) 1433.
[3]
C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, A. P. Ramirez, Optical Response of High-Dielectric-Constant Perovskite-Related Oxide, Science 293, (2001) 673-676.
[4]
A. F. L. Almeida, R. R. Silva, H. H. B. Rocha, P. B. A. Fechine, F. S. A. Calvalcanti, M. A. Valente, F. N. A. Freire, R. S. T. M. Sohn, A. S. B. Sombra, Experimental and numerical investigation of a ceramic dielectric resonator (DRA): CaCu3Ti4O12 (CCTO), Physica B 403, (2008), 586-594.
[5]
B. A. Bender, M.-J. Pan, The effect of processing on the giant dielectric properties of CaCu3Ti4O12, Materials Science and engineering B 117, (2005), 339-347.
[6]
V. Brizé, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais, F. Gervais, Grain size effects on the dielectric constant of CaCu3Ti4O12 ceramics, Materials science and engineering B, 129, (2006), 135-138.
[7]
F. Amaral, L. C. Costa, M. A. Valente, Decrease in dielectric loss of CaCu3Ti4O12 by the addition of TeO2, J. Non-Crystalline Solids, 357, (2011), 775-785.
[8]
Worawut Makcharoen, Jerapong Tontrakoon, Gobwute Rujijanagul, David P. Cann, Tawee Tunkasiri, Effect of cesium and cerium substitution on the dielectric properties of CaCu3Ti4O12 ceramics, Ceramics International, 38S, (2012), S65-S68.
[9]
Tao Li, Zhenping Chen, Fanggao Chang, Junhong Hao, Jincang Zhang, The effect of Eu2O3 doping on CaCu3Ti4O12 varistor properties, J. Alloys and Compounds, 484, (2009), 718-722.
[10]
Sudipta Goswami, A. Sen, Low temperature sintering of CCTO using P2O5 as a sintering aid, Ceramics International, 36, (2010), 1629-1631.
[11]
F. Amaral, M. A. Valente, L. C. Costa, Dielectric properties of CaCu3Ti4O12 (CCTO) doped with GeO2, J. Non-Crystalline Solids 356, (2010), 822-827.
[12]
Dong Xu, Biao Wang, Yuanhua Lin, Lei Jiao, Hongming Yuan, Guoping Zhao, Xiaonong Cheng, Influence of Lu2O3 on electrical and microstructural properties of CaCu3Ti4O12 ceramics, Physica B, 407, (2012), 2385-2389.
[13]
Séka Simplice Kouassi, Jean-Pierre Sagou Sagou, Cécile Autret-Lambert, Sonia Didry, Anoop Nautiyal, Marc Lethiecq, Effect of Vanadium Doping on Microstructure and Dielectric Behavior of CaCu3Ti4O12 Ceramics, International Journal of Materials Science and Applications, 6 (1), (2017); 54-64.
[14]
Raman Kashyap, O. P. Thakur, R. P. Tandon, Study of structural, dielectric and electrical conduction behaviour of Gd substituted CaCu3Ti4O12 ceramics, Ceramics International, 38, (2012), 3029-3037.
[15]
L. F. Xu, P. B. Qi, X. P. Song, X. J. Luo, C. P. Yang, Dielectric relaxation behaviors of pure and Pr6O11-doped CaCu3Ti4O12 ceramics in high temperature range, J. of Alloys and Compounds, 509, (2011), 7697-7701.
[16]
Muhammad Azwadi Sulaiman, Sabar D. Hutagalung, Mohd Fadzil Ain, Zainal A. Ahmad, Dielectric properties of Nb-doped CaCu3Ti4O12 electroceramics measured at high frequencies, J. of alloys and Compounds, 493, (2010), 486-492.
[17]
G. Chiodelli, V. Mssaroti, D. Capsoni, M. Bini, C. B. Azzoni, M. C. Mozzati, P. Lupotto, Electric and dielectric properties of pure and doped CaCu3Ti4O12 perovskite materials, Solid state Communications, 132, (2004), 241-246.
[18]
A. R. West, T. B. Adams, F. D. Morrison, D. C Sinclair, Novel high capacitance materials: - BaTiO3: La and CaCu3Ti4O12, J. Eur. Ceram. Soc. 24, (2004), 1439.
[19]
T.-T. Fang et H.-K. Shiau. Mechanism for developing the boundary barrier layers of CaCu3Ti4O12, J. Am. Ceram. Soc. 87, (2004), 2072-2079.
[20]
P. Lunkenheimer, R. Fichtl, S. G. Ebbinghaus, A. Loidl. Non-intrinsic origin of the Colossal Dielectric Constants in CaCu3Ti4O12, Phys. Rev. B, 70, (2004).
[21]
A. Sen, U. N. Maiti, R. Thapa, K. K. Chattopadhyay, Effect of vanadium doping on the dielectric and nonlinear current–voltage characteristics of CaCu3Ti4O12 ceramic, J. alloys and Compounds, 506, (2010), 853-857.
[22]
M. C. Mozzati, C. B. Azzoni, D. Capsoni, M. Bini, V. Massaroti, Electron paramagnetic resonance investigation of polycrystalline CaCu3Ti4O12, J. Phys. Condens. Matter 15, (2003), 7365-7374.
[23]
D. capsoni, M. Bini, V. Massarotti, G. Chiodelli, M. C Mozzatic, C. B. Azzoni, Role of doping and CuO segregation in improving the giant permittivity of CaCu3Ti4O12 J. Solid State Chem., 177 (2004), 4494.
[24]
A. Koitzsch, G. Blumberg, A. Gozar, B. Dennis, A. P. Ramirez, S. Trebst, S. Wakimoto, Antiferromagnetism in CaCu3Ti4O12 studied by magnetic Raman spectroscopy, Phys. Rev. B, 65, (2002), 524061.
[25]
Virginie Brizé, Cécile Autret-Lambert, Jérome Wolfman, Monique Gervais, Patrick Simon, François Gervais, Temperature dependence of electron spin resonance in CaCu3Ti4O12 substituted with transition metal elements, Solids State Sciences, 11, (2009), 875-880.
Browse journals by subject