Volume 7, Issue 2, June 2018, Page: 34-43
Simulation for Texture Formation of Both Face-Centered-Cubic Metals and Body-Centered-Cubic Ones Based on Rotational Symmetry among Principal Axes
Hiroaki Masui, Department of Engineering, Teikyo University, Utsunomiya-shi, Japan
Received: May 10, 2018;       Accepted: May 30, 2018;       Published: Jul. 11, 2018
DOI: 10.11648/j.am.20180702.14      View  1484      Downloads  171
Based on the rotational symmetry of the principal axes of X [100], Y [010] and Z [001], in fcc metal 24 possible combinations of the five slips on {111} planes on <110> direction while in bcc metal 72 possible combinations of the five slips on {110} planes on <111> direction by intersection of two kinds of {110} planes from the three ones composed of {110}, {101} and {011} are respectively chosen both based on Taylor’s formidable restriction rule of the five slips. In fcc metal, orientation at onset (minimum) of Taylor factor M value, i.e. the minimum total slip amount, shows the cube {100}<001> and the M value gradually increases by way of {100}<001>→ {100}<016>→ {100}<013>→ {100}<012>→ {100}<023> → {100}<0,9,11> with decrease of φ1 or does {100}<001>→ {016}<100>→{013}<100> →{0,6,13}<100> with increase of φ2, most of which were experimentally reported as indiscrete recrystallized orientations with lowest dislocation density named the cluster composed of cube and cube-family in fcc metal. In bcc metal, crystal rotation is carried out by only one solution among the 72 by the minimum total slip amount at every strain and simulates properly lengthy of accumulated researcher’s experimental results such as the three stable orientations of bcc metal in rolling {112}<110>, {11 11 8}<44 11> and {100}<011>.
Body-Centered-Cubic, Face-Centered-Cubic, Deformation, Texture, Symmetry
To cite this article
Hiroaki Masui, Simulation for Texture Formation of Both Face-Centered-Cubic Metals and Body-Centered-Cubic Ones Based on Rotational Symmetry among Principal Axes, Advances in Materials. Vol. 7, No. 2, 2018, pp. 34-43. doi: 10.11648/j.am.20180702.14
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
M. A. Armstrong, Groups and Symmetry (Springer), 2010, pp. 104-165.
E. Noether, Nachr. Gesellsch. Wiss. Goettingen, vol. 2, 1918, pp. 235.
G. I. Taylor, “Plastic Strain in Metals”, J. Inst. Metals, vol. 62, 1938, pp. 307-324.
Q. Xie, A. Van Bael, J. Sidor, J. Moerman and P. Van Houtte, Acta Mater., vol. 69, 2014, pp. 175.
M. Takenaka, Y. Shingaki, T. Imamura and Y. Hayakawa,”Influence of carbon content on cold rolling and recrystallization texture in polycrystal 3% Si-Fe”, Proc. ICOTOM 17, 2016, Ser. No. 12042.
M. Gensamer and R. F. Mehl, Trans. AIME, vol. 120, 1936, pp. 277.
I. L. Dillamore and H. Katoh, Metal Science, vol. 8, 1974, pp. 73.
D. Rollet and S. I. Wright, Texture and Anistropy (Cambridge University Press), 1998, pp. 179-201.
X. R. Sun, H. Z. Wang, P. Yang and W. M. Mao, Acta Metall. Sin., vol. 50, 2014, pp. 387-394.
Y. Zhang, D. Juul Jensen and A. Godfrey Mat. Sci. Forum, vol. 715-716, 2012, pp. 329-332.
L. Lapeire, J. Sidor, E. Martinez Lombardia, K. Verberken, I De Graeve, H. terryn and L Al Kestens,”Texture comparison between cold rolled and cryogenically rolled pure copper”, Proc. ICOTOM 17, 2016, Ser. No. 12016.
O. Daaland and E. Nes, “Origin of Cube Texture during Hot Rolling of Commercial Al-Mn-Mg Alloys”, Acta mater., vol. 44, No. 4, 1996, pp. 1389-1411.
J. Hjelen J, R. Orsund and E. Nes, “On the Origin of recrystallization Textures in Aluminum”, Acta metal. mater., vol. 39, No. 7, 1991, pp. 1377-1404.
H. Inagaki and A. Umezawa, “Origin of Cube Recrystallization Textures in Heavily Rolled High Purity Al”, Materials Science Forum, vol. 495-497, 2005, pp. 1273 -1278.
M. Koizumi, H. Okudaira and H. Inagaki, “Influenceof Fe Content on Recrystallization, Grain Growth and Recrystallization Textures inAl-Mg Alloys”, Proc. ICOTOM12, 1999, pp. 860- 865.
D. M. Liu, W, P, Liu, X. Liu and M. L. Zhou,” Texture Control in Silver”, Materials Science Forum, vol. 495-497, 2005, pp. 725-730.
N. Rajmohan and J. A. Szpunar, “Stored Energy in Can Body Aluminum Alloy after Cold Rolling and Stress Relieving”, Materials Science and Technology, vol. 15, 1999, pp. 1259-1265.
O. Engler, “Recrystallization Textures in Copper-Manganese Alloys”, Acta mater, vol. 49, 2001, pp. 1237-1247.
A. A. Ridha and W. B. Hutchinson,“Recrystall- ization Mechanisms and the Origin of Cube Texture in Copper”, Acta Metal, vol. 30, 1982, pp. 1929-1939.
D. Juul Jensen, F. Lin and Y. Zhang, Mat. Sci. Forum, vol. 753, 2013, pp. 37-41.
H. Masui,”Simulations of texture formation of body-centered-cubic metals by three kinds of intersections of two {110} slip planes”, Proc. ICOTOM17, 2016, Ser. No. 12010.
R. Arita, K. Kusakabe, K. Kuroki and H. Aoki, J. Phys. Soc. Jpn, vol. 66, 1997, pp. 2086.
X. G. Wen, Quantum Field Theory of Many Body System (Oxford University Press), 2004.
Y. Kazama, Symmetry and conservation quantity (Science Ltd, Japan), 2008, pp. 26-32.
H. Masui, “Simulation for F. c. c. Deformation Texture by Modified Pencil Glide Theory”, Acta mater, vol.47, No. 17, 1999, pp. 4283-4298.
H. Masui, Materials Science Forum, vol. 495- 497, 2005, pp. 971.
H. Masui, Ceramics Trans. vol. 201, 2008, pp. 489.
E. A. Calnan and C. J. B. Clews, Phil. Mag., vol. 42, 1951, pp. 616.
A. D. Rollet and U. F. Kocks, Proc. ICOTOM 8, 1988, pp. 375.
Browse journals by subject